

USING POSIX FOR EMBEDDED DEVELOPMENT

Steve Furr (QNX Software Systems Ltd., Ottawa, Ontario, Canada, K2M 1W8)

ABSTRACT

More than ever, commercial, government, and military
organi-zations are demanding that developers use POSIX
interfaces. The question is, how much of the POSIX standard
must your project support? POSIX is so large, and has so
many optional components, that few applications need
everything it offers. This session introduces basic concepts of
application porta-bility and explores the benefits of using
POSIX as a standard for achieving greater levels of
portability. It examines how to: identify which POSIX APIs
your system requires; determine whether your OS can support
those APIs; achieve portability without sacrificing
performance; and weigh the relative merits of POSIX
conformance, POSIX compliance, and POSIX certification.
Examples related to portability are examined from the
perspective of various editions of the POSIX specifi-cations.

1. TODAY’S ENVIRONMENT

In today’s realtime and embedded environments, the diversity
of operating environments (e.g. RTOS, general-purpose
operating system, realtime kernel) poses a real challenge to
organizations deploying software for multiple programs or
across multiple product lines.

Product perspective

A typical product company has multiple product lines with
substantial software investments incorporated into the
products. There is a strong desire to preserve these software
investments when migrating features across product lines, or
when creating subsequent generations of a product, possibly
on new hardware and software platforms. All too frequently,
this may involve a significant amount of recoding. Such
recod-ing can substantially add to the development costs of
the product and add delays in development that increase the
time to market.
 Unfortunately, there is often limited interoperability of
the software used to implement important product features
and functions. In many cases, different product lines or even
models within a line may run on entirely different operating
environments. This tends to limit the choices in building new
products, or migrating features from one product line to
another. Each product is susceptible to vendor lock, in which

the product and most of its features become tied to the opera-
ting environment on which its software is implemented.
 In this environment, migrating features or upgrading a
product to new hardware may often require extensive
recoding when a change of operating environment is
considered by necessity (e.g. where the hardware capabilities
can’t be sup-ported) or by design (e.g. advanced performance
or reliability features offered by the new candidate).

Program perspective

From a program perspective, the issues are largely the same as
for products, but often on a grander scale, since more
deployments may be involved, and the complexity of each
deployment may often be greater.
 Most programs have a large software component — a
component that, in many cases, is based on existing software
repurposed for the new program. For this reason, software
reuse has been a focus for many organizations over the last
decade and even longer. There is a strong desire among
system integrators and even their customers to build libraries
of reusable software algorithms for use in new program
deployments. To avoid substantial recoding for each new
deployment program, portable software is required to make
this strategy a success.

2. PORTABILITY

Portability is a characteristic of software (e.g. an application,
library, framework, or other base of code) that indicates the
extent to which the software is reusable without modification.
A portable application is one that can be reused in different
operating environments, whether they come from a different
vendor or different versions of the same vendor’s products.
 Consequently, portability can be difficult to measure in
any quantifiable fashion — so many variables may be
involved. Even the fact that software has successfully
migrated from one platform to another cannot be taken as a
reliable metric of whether or not it is portable. Any
assumptions that may have been built into the system
interfaces may prove to be invalid the next time a port is
attempted, even to a subsequent version of the same platform.
 Portable software is most easily created when the system
interfaces provided by the underlying operating environments
have sufficient commonality. Greater amounts of
commonality translate into fewer contingencies that must be

Proceeding of the SDR 04 Technical Conference and Product Exposition. Copyright © 2004 SDR Forum. All Rights Reserved

taken into account to make code portable to different
operating environ-ments.

3. API CONTRACT

Standardized application programming interfaces (API) repre-
sent one means to address the portability issue. If you think of
the API as a contract between the implementation vendor and
the application developer, then you can begin to measure
portability by the extent to which the application stays within
the letter of the contract. In this case, provided that the
application developer only uses the API as documented, and
the implementation vendor continues to produce operating
environments that behave as described, the code will continue
to be portable to all versions of the same platform.
 Industry-standard API specifications can preserve
software investments by extending the contract across a
broader base of implementations. If the application developer
creates conforming applications that stick to the API contract,
then their code will be portable to any conformant imple-
mentation of that specification.
 Applicable industry-standard API specifications preserve
software investments by enabling the creation of code that is
portable to multiple platforms from different vendors. While
an incremental level of effort is required to develop portable
software, recoding isn’t necessary to migrate to other
conformant implementations, reducing the development risks,
costs, and time-to-market. By choosing a widely used,
industry-standard API, product companies can also reduce
training costs, increase productivity, and leverage a larger
pool of programming expertise.

4. TYPES OF PORTABILITY

Consideration of portability as a contract between the appli-
cation and the implementation introduces additional factors
that determine whether the application can be considered to
be a conforming application. These take into account the two
elements of portability that a conforming application must
possess — intrinsic portability and conceptual portability.

Intrinsic portability

Intrinsic portability refers to the portability of the application
in terms of its syntactic use of the interfaces specified by the
API specification. Intrinsic portability can be readily verified
against the source code using static analysis tools.
 It is a relatively straightforward matter to verify whether
the application makes use of any facilities that aren’t specified
by some component of the API specification. This can be
considered a breach of the API contract. In most cases, an
alternate standard facility should be used in place of the
violating construct indicating that the application is non-
conforming, and that the code is non-portable.

 Taking the POSIX specification as an example, there are
two primary aspects to intrinsic portability: the facilities
actually used by the application through function calls, and
the members referenced in structures associated with any of
the facilities of the system interface.
 For portable POSIX code, the UNIX getdents() system
call should be eschewed in favor of the more standard POSIX
directory reading mechanisms.
 The second aspect deals with the use of structures passed
to system interface functions. For example, two structures
commonly used in conjunction with the file management
services in UNIX and POSIX are the dirent and stat
structures.
 POSIX mandates only one element for the dirent
structure: d_name. The rationale is that directory access, for
which the structure is used, is intended to be implementation
independent. The historical UNIX d_fileno or d_ino
member is excluded because it normally represents the i-node
number or file serial number for a UNIX file system. As such,
it is specific to a particular file system implementation and
would be irrelevant in other contexts, such as when applied to
a FAT-based file system on an Intel machine running Win32.
Since only system programs need to access the file serial
number, it is deliberately left out of the POSIX specification
and portable programs should not use it.
 Similarly, the stat structure contains the st_rdev
field under UNIX. This field is specific to the implementation
of character and block special device files under UNIX and
has no meaning outside of this context.
 As with the use of non-standard facilities, use of non-
standard structure members of this form constitute a breach of
the API contract, indicating that the code is not intrinsically
portable.
 These two examples clearly illustrate how these small
violations represent a larger portability problem regarding the
implementation-defined interpretation of the data. This is
essentially the problem of conceptual portability.

Conceptual portability

Conceptual portability is concerned with the manner in which
the system interface facilities are actually used. The main
focus here is to determine whether a code construct in an
application makes any assumptions about the behavior of
facilities in a manner that is unspecified, undefined, or
implementation defined.
 The descriptions of these terms are representative of the
way they are generally defined in most API specifications and
industry standards:

• Unspecified — Correct program constructs whose seman-
tics aren’t completely specified, but which must be per-
formed correctly by the implementer, leaving some latitude
for the method chosen. In standard C, for example, the

Proceeding of the SDR 04 Technical Conference and Product Exposition. Copyright © 2004 SDR Forum. All Rights Reserved

most notable unspecified behavior is the order of evaluation
of some expressions.

• Undefined — Constructs that are illegal but may be difficult
to detect. API specifications don’t impose any restrictions
on these, so the implementations are free to handle them in
any way the implementer sees fit.

• Implementation-defined — Legal constructs whose exact
behavior is left to the discretion of the implementer using
any appropriate approach, providing that approach is
explained to the user.

Undefined behaviors are often the most pernicious of these,
since there is no indication of how an implementation will
respond to their use. You might expect applications to behave
normally and continue to execute with unexpected results or
errors, but this isn’t always the case. Such behavior may
actually result in abnormal termination of the application.
 Conceptual portability is harder to determine than
intrinsic portability. It involves a careful examination of the
use of a sequence of code constructs to determine if it makes
assumptions about implementation behavior that isn’t speci-
fied by the API specification. Code reviews are an important
tool for identifying portions of code that aren’t conceptually
portable. They can pinpoint constructs that are specifically
identified by the API specification as unspecified, undefined
or implementation-defined behavior.
 A good example of this is in the area of directory
operations. POSIX provides a directory stream corresponding
to a named directory for examining the contents of that
directory. The directory stream is obtained by calling
opendir() and destroyed by calling closedir(). Successive calls
to the readdir() function return a representation of each entry
in the directory and rewinddir() restores the directory stream
to its initial state. The directory stream may be implemented
in any suitable manner and the standard doesn't specify
whether all entries have to be on the same device.
 We have already seen that the historical UNIX
d_fileno member has been excised from the POSIX.1
specification for the dirent structure that is used to represent
directory entries when reading directories. UNIX programs
often perform comparisons using the file serial number in the
directory entry returned by readdir() or getdents() to locate a
particular file, or to identify if the directory entry represents a
link to the same on-disk file as another entry. The portable
way to make this comparison is to perform a stat() operation
on the file represented by the directory entry. In this case both
the st_dev and st_ino file characteristics should be
compared with the target file because the files represented by
the entries may reside on different devices. For implementa-
tions or file systems that don’t support links, the comparison
will be superfluous and won't affect the application’s
behavior.

 The directory reading operation doesn’t specify that “.”
or “..” must be returned by a readdir() or in what order
directory entries will be returned. Portable code has to be able
to cope with any ordering of the directory entries and should
be able to deal with “.” and “..” but not require them.
Furthermore, there is no guarantee that the same ordering will
be used in any subsequent reading of the directory. To allow
for this possibility with unconventional file system
implementations, seeking to a particular position in a
directory isn’t part of the standard. Portable POSIX.1
applications shouldn't use the UNIX seekdir() or telldir()
system calls. The rewinddir() func-tion could be used, but is
nonportable in this context.
 Directory operations are just one of the many areas your
coding standards must deal with. Each type of facility your
application requires should have a set of guidelines regarding
their use and highlighting these types of unspecified
behaviors.

5. APROACHES TO PORTABILITY

A number of approaches may be taken to ensure that a code
base is portable. Two important ones are discussed here, rela-
ting to judgments of how well the application compares
against the API contract(s) that apply to all the API specifica-
tions.
 Thinking of them in contractual terms, they generally
take either a normative approach (which assesses portability
from a course of performance perspective) or an empirical
approach (which assesses portability from a course of
practice perspective).
 Course of performance considers whether the application
is in strict conformance with the rules of the API specification
(the contract). Course of practice considers how well the
application conforms relative to industry norms, or to some
acceptable level of expectations.

Normative — conformance

The normative approach dictates that all portable code will
qualify as a strictly conforming application — one that makes
use only of facilities fully defined by one of the API specifi-
cations that govern the implementation on the target platform.
 A benefit to this approach is that it provides a simple
pass/fail metric of code portability. An application or code
base can be defined as either fully portable or not, based on
whether it has been verified as strictly conforming.
 If the normative approach is to provide a verifiable
metric of portability, three premises must hold true:

1. There must be an application environment profile (AEP)
completely defining the set of API specifications that the
code is tested against as strictly conforming.

2. The code itself must be verifiable as strictly conforming.

Proceeding of the SDR 04 Technical Conference and Product Exposition. Copyright © 2004 SDR Forum. All Rights Reserved

3. The implementation must be conformant to the application
environment profile — it must implement all of the chosen
API specifications as defined.

Pragmatically, the normative approach is useful only if a
suitable AEP can be selected — or alternatively, a scalable set
of profiles — for which there is a suitable variety of
implementations. Only then can the code be retargeted to all
of the types of platforms required to fit its intended use.

Empirical — contingency

The empirical approach is somewhat harder to directly
measure but it takes into account the diversity of implemen-
tations. It recognizes that no API specification may be able to
account for all of the facilities or implementation-dependent
behavior that may be required by an application.
 It loosely allows for extensions that rely on platform-
specific facilities, or deviations from specifications — that
rely on unspecified or implementation-defined behavior —
provided that the behavior is well documented for a target
platform implementation.
 Portable code designed for this approach will usually
operate conditionally based on the contingencies introduced
by variation in behavior for different implementations of
unspecified, implementation-defined behavior or facilities
outside of specifications. In many cases, there may be condi-
tional compilation of platform-specific pieces of code.
 One advantage to this approach is the ability to leverage
the knowledge base of an organization or the industry at large
where the different contingencies for various implementations
have been codified in some form.

Hybrid approach

A hybrid combining elements of the two approaches is viable.
The hybrid approach adopts the AEP definition or selection
from the normative approach and imposes conformance
criteria on applications. The conformance criteria are more lax
than those for a strictly normative approach. They may
require that an application be a conforming application, but
not necessarily a strictly conforming application. A
conforming application is allowed to make use of unspecified
or implementation-defined behavior under certain rules.
 A hybrid model may also allow for extension — use of
features not defined by the AEP — by a conforming
application using extensions. A hybrid methodology, if imple-
mented appropriately, will provide a variance plan that gives
guidelines or conformance rules for using extensions in a
manner consistent with the AEP.

Variance plan

Occasionally, it won’t be possible to achieve the desired result
on a supported platform using the standard interfaces
provided by the AEP. The role of the variance plan is to
ensure that these situations are handled consistently. This
consistency lets you maximize the likelihood that the same
solution can be employed on multiple platforms.
 The variance plan should identify the situations that
constitute exceptions to the normal usage of the AEP and how
the situation should be resolved. The latter should be explicit,
identifying an idiom to be employed and the manner in which
the application is configured to make use of that idiom. This
is an opportunity for the variance plan to document best prac-
tices taken from the industry or internal to the organization.
Autoconf and configure scripts are a good example of the
effective codification of best practices in the open source
community. Autoconf and configure provide a knowledge
base of programming idioms and tools to enable code
portability across a wide variety of platforms.

Common ground

Regardless of the approach taken to portability, its success
will rely on finding some common ground between the
system interfaces provided by target implementations. Finding
a rele-vant set of API specifications to incorporate into an
AEP may draw upon industry standards, or follow industry
norms by adopting de facto standards or widely available
specifications.
 The selection of appropriate API specifications can
greatly influence the amount of effort that needs to be
invested in creating or modifying applications for portability.
Even with tools to assist the preparation of contingently
portable code, greater standardization allows fewer lines of
conditional code to be written to accommodate differences in
implementation.
 The selection of the system-level interface is one that can
have the greatest impact on overall code portability.

6. STANDARDS & PORTABILITY — POSIX

The system interface provides access to fundamental system
services such as file management, device control, multi-
programming and inter-application communication. The
system interface should be your largest source of concern in
obtaining code portability to a wide variety of platforms.
 The most important portable system interface speci-
fication is the Portable Operating System Interface (POSIX).

What is POSIX?

POSIX originally started out as a family of standards that
focus on the system interface specification. More recently, the

Proceeding of the SDR 04 Technical Conference and Product Exposition. Copyright © 2004 SDR Forum. All Rights Reserved

various standards that POSIX comprises have been consoli-
dated into a single specification. The POSIX specification is
unique in that it provides an interface to operating system
services. As such, POSIX doesn't favor any particular imple-
mentation mechanism.
 The primary goal of the specification is source code
portability so it doesn’t impose any binary compatibility
restrictions, allowing for system-dependent extension. POSIX
is designed to be the minimal interface required to provide the
set of system services covered. Factored together, these
features allow POSIX to be implemented in a number of ways
on a wide range of platforms including:

• systems derived from UNIX

• independent implementations designed to the POSIX
specifications

• emulations hosted on different operating systems

The POSIX specification emerged in the 1980s from efforts in
the user community to obtain a consistent set of system
interfaces from the vendors of the many derivatives of UNIX.
The POSIX specification was formally developed by the
IEEE, and eventually ratified as an ISO standard.
 A completely new edition of the specification was
introduced in 2001, jointly developed by the IEEE, ISO, and
the Open Group. This version of the standard, as amended in
2003, fully incorporates all of the previous POSIX family of
standards. It represents the base level of capability for any
new POSIX implementation. The POSIX specification is also
the base for specifications such as Linux Standard Base and
the Embedded Linux Consortium Platform Specification.

Where is POSIX used?

Because it is focused on source compatibility and is largely
agnostic to implementation approaches, POSIX can be broad-
ly implemented across a wide range of systems, including:

• current major systems that are ultimately derived from the
original UNIX system code (Version 7 or later)

• compatible systems that aren’t derived from the original
UNIX system code

• emulations hosted on entirely different operating systems

• networked systems

• distributed systems

• systems running on a broad range of hardware

API evolution

As application demands have risen and new facilities have
required standardization (e.g. thread programming, synchro-
nization, etc.), the POSIX specification has grown through

amendments. The incorporation of the Single UNIX Specifi-
cation into the POSIX standard has also resulted in the
adoption of a large number of standardized UNIX interfaces.
 The end result is that the overall scope of the specifi-
cation has grown from approximately five hundred interfaces
in the 1996 edition of POSIX to close to two thousand today.
 The specification is scalable in that vendors need only
implement a mandatory set of features that represent the base,
but they may select which feature sets they wish to implement
from the remainder.

7. APPLICATION ENVIRONMENT PROFILES

The definition of an application environment profile takes into
account several factors. The class of application imposes
demands on the facilities required of the system. Constraints
may be imposed by the nature of the target market — as in the
embedded market — that might preclude the AEP from
specifying complete UNIX facilities. A particular customer or
corporate policy may also require conformance with one or
more formal standards.
 At its simplest, an AEP may consist of nothing more than
references to the appropriate set of base specifications (the
standard and the edition) as determined by the runtime
requirements of the application. This might be the case for a
simple application with minimal runtime requirements that
could be satisfied using ANSI C, the standard C library. and
POSIX, but in practice the AEP will usually be more
complex.
 One difficulty with POSIX is that a number of facilities
are optional within the standard, and other facilities aren't
covered at all. A POSIX implementation only has to meet the
POSIX system interface specification in order to claim
POSIX conformance. POSIX base functionality on its own
can't support a broad range of applications unless a suitable
profile is specified and other facilities are added.
 For example, POSIX doesn’t require an implementation
to allow a user to belong more than one group of users at any
given time, but your profile may require this feature, known
as supplementary groups, for correct application behavior. If
so, your definition of an application conforming to the AEP
would take this into account.
 Part of the solution is to use a profile that specifies which
elements of POSIX are to be treated as mandatory. FIPS-151,
a federal information processing standard developed by the
National Institute for Standards and Technology (NIST), is
one widely adopted profile based on earlier editions of the
POSIX specification that did just this. It requires job control,
imposes a minimum number of groups to be supported (8),
and restricts the use of chown to privileged users. A profile
like FIPS-151 will cite the specification base and define the
feature sets from the base specification that are mandatory

Proceeding of the SDR 04 Technical Conference and Product Exposition. Copyright © 2004 SDR Forum. All Rights Reserved

Conforming implementations

As we have seen, conformance to POSIX specifications is
largely a matter of degree, since not all features are
mandatory. The precise set of features available in an
implementation depends on the specifications to which the
vendor claims conformance.
 In addition to some of the profiles previously discussed,
the POSIX minimal application profiles define small subsets
of the POSIX specification suitable for different categories of
embedded devices. These were originally released as POSIX
specification 1003.13. This specification has recently been
amended for incorporation into the 1003.1-2001 specification.

POSIX compliance: OS comparison

When selecting a POSIX implementation, it is important to
consider the vendor’s conformance statement or compliance
statement. A vendor’s conformance statement may apply to
the POSIX base specification for a particular edition of the
specification (e.g. 1003.1-1996, 1003.1-2001), or to a specific
profile.
 There are four profiles defined in the POSIX minimum
application profile specification for different categories of
embedded devices, each of which mandates implementation
of a specific suite of POSIX feature sets. These four profiles
are normally identified as PSE51, PSE52, PSE53, and PSE54.
You should be aware of what each of these profiles provide,
as most embedded operating environments are compliant to
one of them.

POSIX specifications: OS comparison

UNIX systems, Linux systems, and a select number of real-
time operating systems will be compliant to a larger vendor-
defined profile of POSIX. In these instances, it is important to
consider the base specification, as well as all of the feature
sets they claim to support.

Selection Factors

A number of factors determine whether a profile or choice of
operating environment is applicable to a specific application
domain. All of these questions are particularly suited to
embedded environments where there is considerable variation
in the levels of implementation.

Some of the factors to consider here are:

• Realtime — Does this choice offer sufficient support for
clocks & timers, priority-based thread scheduling, realtime
signals, interprocess communication, and synchronization?

• Reliability — If the target device will run multiple
applications concurrently, can the applications be isolated
(memory protection) from each other? Do they need to be?

• Persistent storage — Does the choice offer standard file
system interfaces?

• Security — Will the device support multiple users? If so,
does access to resources need to be controlled on a user-by-
user basis?

• Concurrency — Is multiprocessor hardware used, and does
it support SMP? If so, additional synchronization primi-
tives, such as spinlocks and barriers, may be needed for
maximal performance.

The appropriate definition of these selection criteria, as well
as the selection of mandatory feature sets for an AEP — on
the basis of the outcomes — can be a major contributor to the
usefulness of the AEP.

8. CONCLUSIONS

Developing portable applications is a complicated process
that involves careful consideration and planning. A
regimented approach using an AEP, coding guidelines, and a
variance plan provide a framework for communicating the
results of that process to developers, allowing them to
produce portable code in a more effective and consistent
manner. The material required to produce effective coding
guidelines is usually contained within the standards
themselves. Automatic configuration tools such as Autoconf
provide valuable infor-mation about how to configure
software for different target platforms to deal with
implementation dependencies.
 A solid specifications base enables organizations to
maximize their code reuse with the least amount of effort. The
POSIX specification is key to enabling application portability
across a wide range of systems, from UNIX and Linux
servers to deeply embedded devices. Appropriate selection of
implementations requires proper consideration of what feature
sets may be necessary for the application category.

© 2004 QNX Software Systems Ltd. QNX and Neutrino are registered trademarks of QNX Software Systems Ltd. in certain jurisdictions.
All other trademarks and trade names belong to their respective owners.

Proceeding of the SDR 04 Technical Conference and Product Exposition. Copyright © 2004 SDR Forum. All Rights Reserved

