
NEXT GENERATION SCA OPERATING ENVIRONMENTS

Jerry Bickle

Chief Scientist SDR Products of PrismTech Corp., Burlington, Mass.

jerry.bickle@prismtech.com

ABSTRACT

Joint Tactical Radio System (JTRS) Software

Communications Architectures (SCA) implementations have

been branded by many as being slow or large because of the

underlying use of technologies such as the Common Object

Request Broken Architecture (CORBA) and the eXtensible

Markup Language (XML). Some of this branding has also

occurred because of CORBA’s initial usage in enterprise

systems using TCP/IP. However today’s embedded

CORBA middleware, designed and standardized for use in

real-time, resource constrained, distributed systems makes

the building of small and fast SCA implementations viable

across General Purpose Processors (GPPs), Digital Signal

Processors (DSPs) and Field Programmable Gate Arrays

(FPGAs).

 The paper begins with a brief discussion about SCA

perceptions and technologies that offset these perceptions.

The paper additionally discusses SCA distributive

communication approaches: adapters along with their short

comings and new alternatives which are architecturally

consistent and use CORBA throughout the radio set. Finally,

the paper discusses the capability of SCA operating

environments on DSPs and FPGAs.

1. INTRODUCTION

Past, and even some current, SCA/SDR implementations

have decided to artificially limit SCA/SDR component

framework implementations to operate only on General

Purpose processors (Pentiums, Xscale, PowerPC) and to use

adapter technologies on GPPs to interface with non-CORBA

DSP and FPGA components (as shown in Figure 1). This

however, need not be the case with newer alternative

solutions that allow the Operating Environment (OE) to

support a larger array of SDR hardware processing elements

on GPPs, DSPs, and FPGAs.

Figure 1. Distributive Communication Approaches

 The SCA framework was never intended to be limited

to only GPP as many believe. The goal of the architecture

(as in many good architectures) has always been to remain

implementation technology neutral and to extend beyond the

GPP boundary. The goal of SCA is to extend the

architecture as close to the antenna as possible to reap the

maximum benefits of reuse and portability. Yet, the pace of

acceptance within industry has been slowed by certain

perceptions about the SCA and its associated

implementation technologies. These perceptions include:

� The SCA Operating Environment (CORBA ORB,

XML, POSIX) is large and takes up valuable

system resources such as memory.

� The CORBA is low performance and adds too

much overhead for simple data transfers. This

perception is based on TCP/IP being used as the

transfer mechanism, which is the default behavior

for a CORBA implementation.

� XML parsing is too slow and overkill

� There is no SCA Commercial Off The Shelf

(COTS) solution for communicating with

waveform components implemented on devices

such as DSPs and FPGAs

 Other causes of slow acceptance are initial investment

in a technology such as in the SCA and the reluctance to use

CORBA technology in signal processing solutions. This is a

paradigm shift for developers building signal processing

software and such paradigm shifts are often shunned by

skeptics.

 From a historical perspective, these issues are similar to

those faced in the transition from low level programming

languages such as assembly language to higher level

programming languages such as C, C++, and Java. For

example, there was much resistance to the C language

initially because assembly code is faster and takes less

memory space than C. Additionally, C compilers and

emulators had many problems associated with them.

 Experience with the C language has shown that there

are two items needed to make a transition to a new level of

design abstraction. The first, and most important, item is the

business case. In a competitive market, organizations will

strive to implement a new paradigm if there are financial

rewards associated with it. In the example of C, the driver

was cost savings through portability, reuse and

maintainability. Assembly language had speed and size

advantages, but it needed to be rewritten every time an

application was to be run on a new processor. In contrast C

Proceeding of the SDR 06 Technical Conference and Product Exposition. Copyright © 2006 SDR Forum. All Rights Reserved

source code could be written once and then quickly ported

to various platforms.

 While the business case drives the industry to work

towards such paradigm shifts, the new imposed levels of

abstraction associated with them are not initially accepted

until technological breakthroughs enable practical use.

Thus, the second item that is required for abstraction

acceptance is the technical enabler. In the case of C, the

enablers were breakthroughs in both hardware and software

technologies and included such items as

� increases in processor performance,

� increases in memory size and density,

� smaller software footprint,

� more efficient software processing tools

(compilers),

� system elements that were bundled together in a

single package with no need to make elements from

different vendors work together (operating systems

to handle low level hardware interface), and

� high level tools to remove complexity from user

(emulation and debugging environments).

 The combined effect of these enablers allowed the C

language to achieve wide industry acceptance and be used in

many applications.

 Thus, acceptance occurs when the overhead of high-

level abstractions no longer has a significant impact on

system performance. Assembly is still used today in

applications that have strict performance requirements.

However, it is known that this comes at the cost of

portability needed to support future design modification.

 Turning now to the current state of the SCA and

CORBA, we find the recent development of similar types of

enablers for this field such as:

� Advances in performance, size and density

continue to be made for processors, memory and

FPGAs.

� Advances in embedded real-time Object

Management Group (OMG) CORBA specifications

and CORBA profiles for resource constrained

system.

� The sizes of CORBA and SCA implementations

have been reduced dramatically in recent years.

� CORBA Products for DSPs and FPGAs such as

PrismTech’s e*ORB for DSP and Integrated

Circuit ORB (ICO) for FPGAs and ASICs.

� SCA Operating Environment for GPPs, DSPs and

FPGAs such as PrismTech’s entire Spectra OE

middleware for embedded GPPs and DSPs residing

on radio processing platforms once thought too

limited in memory and processing power to contain

them.

� High level tools to remove complexity from SCA

development such as PrismTech Spectra.

 The sum total of all the enablers discussed above brings

CORBA and the SCA to the edge of a new era of component

middleware technologies and development techniques/tools

for software radios. These breakthroughs enable practical

use of CORBA and SCA for software radios.

2. DISTRIBUTIVE PROCESSOR

COMMUNICATION APPROACHES

With the advent of CORBA being used in Software Defined

Radio systems such as JTRS, the result is that additional

burdens and complexities have been placed on the JTRS

platform and waveform developers attempting to handle

communications between radio functionality executing on

GPPs and that found on Digital Signal Processors (DSPs)

and FPGAs. In addition, there have been no standard

mechanisms for handling this complexity. As such,

techniques have emerged which, in trying to deal with these

complexities, actually fail to maintain the architectural

consistency that the JTRS Software Communications

Architecture (SCA) tries so hard to achieve. To make

matters worse, it is this very architectural consistency that

drives the portability and re-use of JTRS applications.

 There are basically two approaches for SCA component

to component distributive communication: Adapter Design

Pattern and COTS Middleware such as CORBA.

2. 1 ADAPTERS

The adapter approach is needed where COTS middleware

solutions are not available. In the past, this approach was

used to support DSP and FPGA components as shown in

Figure 1. The Adapter can be at the component level or

generic non-component level that can accommodate any

component. An example of the component level adapter is a

Hardware Abstraction Layer (HAL) as shown in

Figure 2. The HAL approach places the responsible of

messaging formatting and processing at the component level

at the both CORBA GPP and non-CORBA DSP and FPGA

components that are communicating. This behavior as

illustrated in

Figure 3 is similar to using IP sockets in the sense the

component need to format messages that are to be sent using

the HAL interface, and to process and un-format messages

received from the HAL interface.

Proceeding of the SDR 06 Technical Conference and Product Exposition. Copyright © 2006 SDR Forum. All Rights Reserved

Figure 2. HAL Architecture.

The drawbacks of using the component-level adapter

approach are as follows:

� The component is performing low messaging

processing that has nothing to do with the

component’s implementation logic.

� Reuse and portability of this component is limited

since it is coupled to a HAL.

� Integration is more time consuming.

� The Client Component is not unaware that the

Server Component is a non-CORBA component.

� Not up keeping with the SCA architecture.

� Increase Cost and Schedule for development

Figure 3. Component's HAL Responsibility

 In the SCA, logical device components are used to load

and execute software on to a physical device. In the case of

the generic non-component level adapter approach, this is

usually handled by another component such as an SCA

executable device component thereby creating a proxy

component that fronts for the non-CORBA component as

shown in Figure 4. The proxy component provides some

benefits over component-level adapters such as:

� The client component to the proxy component does

not need to perform low level messaging

processing that has nothing to do with the

component’s business logic.

� Reuse and portability of the client component since

it is compliant with SCA architecture.

� The Client Component is unaware that the Server

Component is a non-CORBA component

Figure 4. Generic Proxy Illustration

This proxy component usually has the disadvantage of being

constrained on its interface capability on what it can support

since it has to work for any component connected to it.

More or less this type of approach tends to be a “one size

fits all” approach.

 With either adapter approach, the adapter passes data to

the local transport via a driver. The data is transferred over

the local transport, such as a system bus, to a transport

interface on the non-CORBA processor. The transport

interface performs address decode and passes the data to the

desired waveform object or function.

 Other short comings of both these approaches are:

� Both approaches are based upon non-standard

middleware solutions usually proprietary in nature,

which results in no COTS tools support to offload

the development of SCA components.

� In addition, there is less reuse and portability of the

waveform components unless one strictly uses the

same hardware architecture on another radio thus

making it hard for technology insertion and

evolution.

� Lastly, a waveform design is usually captured in a

platform specific model and the interfaces between

CORBA components and non-CORBA components

are hidden in the details. Thus, one is unable to

capture the design of the waveform in an

independent method such as a SCA Model Driven

Development tool.

2. 2 NEXT GENERATION CORBA

Next generation CORBA solutions allow a standard

software bus throughout the radio thereby achieving the

vision of SCA/SDR. This software bus allows components

to seamlessly communicate with one another without

knowing what processors they are executing on as shown in

Figure 5. The component’s communication paths could be

on the same processor or not. Additionally, the CORBA

Extensible Transport Framework provides for the

development of standard and efficient transport mechanisms

that support embedded communication. This allows the

flexibility to implement other protocols above and beyond

TCP/IP (CORBA default) for real-time systems (such as

Waveform

Component

HAL

HAL

Waveform MSG FormatterSocket

like

behavior

MSG Processor

FPGAGPP

SCA

Waveform

Component

SCA

Waveform

Component

H
A
L
 P
ro
x
ie
s

C
u
s
to
m
 D
e
v
ic
e
 D
riv
e
r

P
ro
p
rie
ta
ry
 T
ra
n
s
p
o
rt

P
ro
p
rie
ta
ry
 T
ra
n
s
p
o
rt

D
e
c
o
d
in
g
 L
o
g
ic

Pluggable Transport

Non-SCA

Waveform

Component

ORB

FPGAGPP

SCA

Waveform

Component

SCA

Waveform

Component

H
A
L
 P
ro
x
ie
s

C
u
s
to
m
 D
e
v
ic
e
 D
riv
e
r

P
ro
p
rie
ta
ry
 T
ra
n
s
p
o
rt

P
ro
p
rie
ta
ry
 T
ra
n
s
p
o
rt

D
e
c
o
d
in
g
 L
o
g
ic

Pluggable Transport

Non-SCA

Waveform

Component

ORB

Executable

Device

Component

Waveform

Proxy Component

Generic Adapter

Waveform

Component

CORBA to

non_CORBA msg

and vice versa

Creates/Terminates

Proxy adapter for

non-CORBA

Device

Proceeding of the SDR 06 Technical Conference and Product Exposition. Copyright © 2006 SDR Forum. All Rights Reserved

highly optimized shared memory performance transports

with zero copy behavior over RapidIO and cCPI buses).

 Technology now exists that provides the realization of

the SCA throughout the radio. ORB technology such as

PrismTech’s OpenFusion e*ORB for GPPs and DSPs and

PrismTech’s OpenFusion ICO for FPGAs/ASICs. These

types of technologies provide greater flexibility in selecting

processor architectures for SCA/SDR implementations. A

GPP is no longer required since CORBA is available on

other processor types.

 CORBA ORBs are available for C and C++

implementations, and have been highly optimized for

embedded environments such as DSPs. In fact DSP ORBSs

have been used to support SDR implementations going back

to early in the year 2000 on the Digital Modular Radio

(DMR) program.

Figure 5. Next Generation CORBA Illustration

Hardware based ORBs are also now emerging (such as

PrismTech’s Integrated Circuit ORB (ICO)). Hardware

elements of a radio system may now be made CORBA

compliant and reap the benefits of software portability. In

addition to supporting general purpose CORBA

communications, the hardware based ORB has also been

tightly integrated into PrismTech’s Spectra development

tool suite for Software Defined Radio (SDR). This brings

the portability of the Software Communications Architecture

(SCA) onto silicon devices.

 Hardware based ORB is a hardware implementation of

a CORBA ORB. It supports a general subset of CORBA

functions that will support the SCA architecture. While

hardware based ORBs may be used to provide SCA

compatibility, it is primarily a CORBA core and may also be

used in pure CORBA applications with no SCA

requirements. For SCA applications, additional functionality

may be added via SCA development tools (such as

PrismTech Spectra) to implement the SCA component. The

hardware based ORBs are written in portable VHDL that

can be synthesized onto any FPGA or ASIC platform.

 A hardware based ORB design environment usually

consists of:

• A hardware based ORB core,

• IDL to VHDL compiler,

• SCA Modeling Tool,

• The optional SCA waveform component.

3. NEXT GENERATION OPERATING

ENVIRONMENT

The SCA Operating Environment (OE) as shown in Figure 6

along with the next generation CORBA ORBs provides the

added flexibility that allows for SCA Core Frameworks

(CFs) to be implemented on DSPs and FPGAs besides or in

addition to GPPs as depicted in Figure 7. For example, one

could have a complete CF implementation on a DSP or a

partial CF implementation such as a SCA executable device

component. For a partial configurable FPGA, one may also

have a SCA loadable device component.

Figure 6. SCA Operating Environment

FPGA/ASICGPP/DSP

SCA

Waveform

Component

SCA

Waveform

Component

SCA

Waveform

Component

Pluggable Transport
GIOP

ORB (PrismTech ICO)

Virtual Function Call

and Return

Physical Data Xfer

Via middleware

FPGA/ASIC

SCA

Waveform

Component

Pluggable Transport

ORB (PrismTech ICO)

G
IO
P

Pluggable Transport

ORB (PrismTech e*ORB)

RTOS

CORBA Middleware

Core Framework

Proceeding of the SDR 06 Technical Conference and Product Exposition. Copyright © 2006 SDR Forum. All Rights Reserved

6. CONCLUSION

Figure 7. Next Generation OE

4. CONCULSION

The next generation CORBA enablers mentioned above

along with SCA development tools like PrismTech Spectra

usher in a new era of SCA/SDR development. These

breakthroughs allow waveform and platform developers to

concentrate on their radio implementations as they did

before the inception of SDRs, thus allowing developers to

concentrate on waveform business logic instead of building

their own software middleware solutions.

 The perceived shortcomings of CORBA have been over

come by:

� small and fast CORBA implementations to

efficiently support communication across the entire

signal processing chain, including FPGA and DSP

environments. Products such as PrismTech’s

e*ORB require less than 90KB.

� Efficient CORBA implementations, such as

e*ORB, impose little overhead on top of the

underlying performance of the transport.

� Choice of transports in ORB is critical to meeting

performance criteria. ETF allows for custom

transports to be easily supported and allows for

multiple transports to be configured in and used in

the same system.

 The language neutrality of CORBA allows SCA OE to

be written in C (very low footprint) but still support

waveforms written in other languages such as C++ and Ada.

The sizes of SCA OE implementations have decrease

dramatically in recent years. These ultra compact SCA OE

implementations are now available and running on

embedded GPPs and DSPs residing on radio processing

platforms once thought too limited in memory and

processing power to contain them.

 If CORBA is not used throughout the radio then one is

on the road to a poor man’s middleware implementation.

One still has to solve the same issues in a proprietary

manner. Transports, message formats,

marshalling/demarshalling of types, and call dispatch all still

needs to be addressed. Finally, the standardized benefits of

CORBA are substantial:

� CORBA facilitates implementation of portable

waveforms. A key goal of the JTRS program

� The use of standards based middleware like

CORBA and SCA enables greater tool integration,

supporting faster development through Model

Driven Development and generative programming

techniques.

FPGA

DSP

GPP- Embedded

GPP - Enterprise

EORB

C++

EORB

C

EORB

C++

EORB

C

ICO

TAO

C++

JacORB

Java

RtOrb

Ada

EORB

C++

EORB

C

TAO

C++

JacORB

Java

RtOrb

Ada

EORB

C++

EORB

C

EORB

C++

EORB

C
TAO

RtOrb

Ada

EORB

C++

EORB

C
TAO

RtOrb

Ada

OE

OE

OE

OE

Proceeding of the SDR 06 Technical Conference and Product Exposition. Copyright © 2006 SDR Forum. All Rights Reserved

	Search by Author
	Search by Session

