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ABSTRACT 
 
This paper presents further details and results of the 
cognitive engine developed at the Center for Wireless 
Telecommunications (CWT) at Virginia Tech. It provides 
some general design considerations for a cognitive engine as 
well as specific implementation details of CWT’s cognitive 
engine. We further present results taken from the operation 
of the cognitive engine on real radio hardware and show 
how different sets of objectives can alter the quality of 
service required by different users and applications. 
 

1. INTRODUCTION 
 
Cognitive radios (CR) offer promises of enhanced future 
communications. They will play an important role in both 
improved spectrum utilization and better quality of service 
(QoS) for many applications and users, such as public 
safety, the military, and consumers. Cognitive radios 
represent the use of artificial intelligence (AI) on flexible 
communications devices, most likely software defined radios 
(SDR), to enable onboard, real-time optimization of 
frequency, time, power, and space. The objective is 
intelligent resource optimization. 
 This paper discusses the implementation of a cognitive 
engine: the AI algorithms used to control the reconfigurable 
radio platform. Section 2 covers the SDR platforms 
currently operating with the cognitive engine. Section 3 
describes the learning and optimization theory of the 
cognitive engine. Section 4 discusses how the cognitive 
engine operates with a real radio platform, and Section 5 
provides the results of the cognitive engine’s control of one 
of the radios. Section 6 discusses important future 
development and operation of a cognitive engine for CR. 
 

2. RECONFIGURABLE RADIOS 
 
The success of cognitive radios requires a) a reconfigurable 
platform and b) intelligent oversight that understands how to 
reconfigure the platform. The reconfigurable radio platform 
is still its own challenge, yet it is progressing rapidly. The 

CWT CR work is particularly interested in and using two 
current platforms that are making great strides towards the 
reconfigurability required by a successful cognitive radio. 
These are the GNU Radio and the IRIS (Implementing 
Radios in Software) platform from Trinity College’s Center 
for Telecommunications Value-Chain Research (CTVR) [1] 
[2]. 
 
2.1. GNU Radio 
 
The GNU Radio project is an open source project to build a 
software defined radio. It includes a suite of signal 
processing blocks that, when connected together, form a 
flow graph to perform the required SDR capabilities. The 
RF front end generally relies upon the Universal Software 
Radio Peripheral (USRP) [3], a motherboard that does basic 
IF processing of up and down conversion, decimation and 
interpolation, and filtering, and a set of daughterboards to 
perform the final analog up and down conversion, filtering, 
and amplification. The GNU Radio is free and open source, 
and the USRPs are low cost and attractive for research. 
 The current status of the GNU Radio provides blocks to 
do much of the basic digital and analog communications, 
including narrowband AM, FM, GMSK, BPSK, and QPSK. 
The GNU Radio and the USRP together provide a range of 
frequencies and transmit powers (depending on the 
daughterboard in use), flexible specifications for pieces of 
the radio such as the pulse shape filter, the AGC loop, and 
the  Costas loop, among others. 
 
2.2. IRIS 
 
The IRIS platform is another SDR we are working with that 
provides a flexible radio system to control with the cognitive 
engine. The IRIS system includes many of the same blocks 
as the GNU Radio, uses the USRP hardware platform (for 
the same frequency and power capabilities as the GNU 
Radio), and has the additional blocks for higher order QAM 
modulations, channel coding, and OFDM. The intent of 
IRIS is reconfigurability through a simple component 
structure interface defined by an XML document. 
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3. THE COGNITIVE ENGINE 
 
Details of the initial implementation of the cognitive engine 
appear in [4], showing its use with a legacy hardware radio 
system and a software simulation. The hardware system was 
far too limited in its reconfigurability, and simulations are a 
poor measure of a CR’s performance. Because the goal of 
CR is intelligent reconfiguration on all levels of the 
communications stack, assumptions made in a simulation 
mask the challenges faced in a real-world radio deployment 
for which the CR is designed to solve.  
 What we needed was a reconfigurable radio platform so 
that the cognitive engine has a much wider range of 
capabilities to play with and can operate in a real 
environment. The GNU Radio and IRIS provide this 
capability, and results of their operation with the cognitive 
engine are shown later. 
 
3.1. Operational Theory 
 
The cognitive engine performs three major functions: 
optimization, decision making, and learning. The cognitive 
engine takes in sensing and monitoring information and 
produces a new set of parameters that defines the radio’s 
functionality. We call the inputs to a cognitive engine its 
meters and outputs the knobs of the radio, equivalent to 
sensors and actuators of traditional AI systems [5]. 

The operational theory is best summarized in the 
cognition loop of Figure 1. In this loop, the radio provides 
information about the current state of the environment and 
communications system, quantifying things like channel 
propagation effects, quality of service metrics like bit error 
rate (BER) and frame error rate (FER), data rate, and the 
presence of other radios, either cooperative or interferers. 
The cognitive engine uses this information to determine any 
adjustments to the radio. The full system consists of both a 
learning machine, implemented with case-based learning, 
and an optimization process, implemented by a multi-
objective genetic algorithm (GA). The learning and 
optimization procedures operate together, but on parallel 
paths. If the decision maker of the cognitive engine finds 
that the information stored in the cognitive engine’s memory 
is good enough, the optimization process can be skipped. 
Memory can also aid the optimization process by providing 
information to guide and bolster the optimization. In the 
end, if no information is available for the current situation, 
the optimization process can start from nothing and still 
produce a solution. 
 
3.2. Case-Based Learning 
 
The learning and decision making mechanisms follow case-
based decision theory [6], which is closely related to case-

based reasoning [7], or we can just generically refer to it as 
case-based learning.  

Formally, case-based learning defines a set of problems 
q�P, a set of actions a � A, and a set of results r � R. A 
case, c, is a tuple of a problem, an action, and a result such 
that c � C where RAPC uu . Furthermore, memory, M, is 
formally defined as a set of cases c currently known such 
that M � C. 

When the sensor system observes a new problem, p, the 
cognitive engine must determine the action, a, to take in 
response. The problem input could be a change in channel 
condition, spectrum use (the presence of a primary user), or 
a change in the desired quality of service from the 
user/application domain. To determine the best action to 
take, the case-base system analyzes the new problem against 
past cases in memory. The analysis determines how similar 
the new problem is to the past cases as well as how useful 
the past actions were in solving the problem. The action 
defined by the current cognitive engine is the waveform to 
use defined in the physical (PHY) and medium access 
control (MAC) layer. As the work progresses, we will 
extend the actions to incorporate changes at the network, 
transport, and other higher layers as they are defined for full 
cross-layer operation. 

To discover how similar two cases are, a similarity 
function is defined, represented in equation 1. 

 
]1,0[: ou PPs     (1) 

 
The usefulness of the past cases is calculated from a 

utility function as represented in equation 2. 
 

�oRu :      (2) 
 
Case analysis comes down to which case is both most 

similar to the new problem as well as how successful the 
action was in the past. We can look at this as a similarity-
weighted utility function as shown in equation 3. The 
resulting chosen case may not be the most similar case if the 
action of another, less similar case, has performed better. 

 

Figure 1. Cognition Loop. 
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This equation is only one way of analyzing the results of 

cases. The challenge of this technique is to create effective 
similarity and utility functions for the types of information 
received through the sensors. If the cognitive engine has 
multiple domains of interest, like the propagation, spectrum, 
and user/application domains, then the case-base must both 
represent and quantify each of these. Such an analysis is part 
of our future work and not presented here. 
 
3.3. Genetic Optimization 
 
The main contribution of this paper is our solution to the 
optimization problem. As stated above, when the case-base 
produces a suboptimal action to take or possibly no action at 
all if the cognitive engine is not cognizant of the new 
problem, then optimization must take place to produce an 
action, or waveform, suitable for the new problem. 
 The challenge in the radio optimization is determining 
the conflicting goals for different levels of QoS. A simple 
optimization scenario might call for minimizing BER and 
minimizing power consumption, which are competing 
objectives. As the radio’s power consumption is decreased 
by turning down the transmitter power or using suboptimal 
but more computationally efficient signal processing 
algorithms, the BER will increase. This scenario has two 
objectives, but many more objectives exist that have 
dependent relationships such as data rate, occupied 
bandwidth, spectral efficiency, latency, and computational 
complexity among others. See chapter seven of [8] for a 
detailed analysis of the multi-objective nature of radio 
reconfiguration and [4] [9] for more discussion. 
 The genetic algorithm [10] must represent both the 
problem and the solution space effectively. Figure 2 shows 
part of the chromosome that defines a radio.  
 This particular chromosome structure deviates from 
most traditional GAs because of the variable number of bits 
used to represent any gene. This gives the algorithm a large 
amount of flexibility when representing real parameters 
where a radio might be capable of thousands of center 
frequencies over multiple GHz but only has a few 
modulations from which to choose. The chromosome can 
therefore give 20 or so bits to the frequency gene and only 4 
to the modulation gene. A key result of this structure is that 
it makes the GA independent of what radio it is optimizing 
as the chromosome is developed at run time based on simple 
hardware specifications of the radio fed in via XML during 
initialization [11]. 
 Analysis and optimization of multi-objective problems 
is complex but with a rich history over the past three 
decades [12]. The general analysis comes down to finding 
the non-dominated solutions in the solution space, which is 

known as the Pareto front. These solutions are called non-
dominated when optimization in any dimension negatively 
impacts other dimensions. Genetic algorithms are well-
known for successfully optimizing multi-objective problems, 
and it is fairly easy to produce the Pareto front. The real 
challenge is to find the proper solution on the Pareto front 
that best satisfies the quality of service needs of the problem. 
 The population fitness analysis uses what is known as 
Pareto ranking [13]. For this, we use the concepts of 
inferiority and superiority. Summarizing from [13]: 
 
Inferiority: u  is said to be inferior to v  iff v  is partially 
less than u : 
 uvniuvni iii � ��d � :,...,1,,...,1  
That is, if any of the n objectives of v is less than any 
objective of u , v is inferior to u . 
 
Superiority: u  is superior to v  iff v is inferior to u . 
 
 Pareto ranking then ranks each member of the 
population by the number of individuals to which the given 
member is superior. 
 The final piece of the genetic algorithm is the set of 
fitness, or objective, functions that are read in from an 
external dynamic library. These functions represent different 
dimensions of the QoS. When analyzing a particular 
waveform, the objectives must accurately represent the 
performance of the waveform. When the Pareto front has 
been optimized, the final challenge in the algorithm’s 
performance is to make a decision about which waveform on 
the Pareto front best represents or satisfies the QoS needs. 
Some of the individuals will be better in certain dimensions 
than others, where the quality of service measure might 
value some objectives more than others such as reduced 
power consumption over lower BER. To accomplish this, 
each objective is weighted by its importance, and the 
weighted performance of the individuals on the final Pareto 
front is used to determine the selected waveform. The 
analysis is performed much like the Pareto ranking, but 
instead of being given a single point for every dominated 
individual, the individuals receive a weighted sum for each 
objective. 
 

Figure 2. Genetic algorithm chromosome structure. 
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4. REAL-WORLD OPERATION 
 
One of the main purposes of the design of the cognitive 
engine is its ability to work on real radios. To create a 
structure that is highly adaptable to represent different 
platforms, a standard input and output mechanism is defined 
to minimize the amount of work required to translate 
between platforms. The easiest way from both a human and 
machine-readable format is the use of XML. The work is 
detailed in [11] and briefly summarized here. 
 The chromosome structure of the GA is defined such 
that each gene represents at least the minimum number of 
states (or alleles) that a gene may have. For one million 
different frequency settings, the algorithm uses a 20-bit 
representation. The information required by the algorithm to 
establish this is first fed in through an XML hardware 
definition document that defines what knobs the radio has to 
turn and the range through which they can be turned.  
 When the GA finishes the optimization process, it must 
then instruct the radio platform to reconfigure itself to the 
new waveform. Again, the output is done using a simple, 
standard XML file. From here, a simple translation must 
occur to convert the output of the GA to the required input 
format that controls the radio knobs. This is often a small 
program: a Python parser to control the GNU Radios and a 
Java application that translates the genetic algorithm output 
XML to another XML file used to configure the IRIS radios. 
A high-level flow of this is shown in Figure 3.  
 Table 1 lists the knobs and ranges available to the 
cognitive engine when using the GNU Radio. 
 

5. EXPERIMENTS 
 
To test how the GA optimization process works, the 
cognitive engine was applied to the GNU Radio to produce 
waveforms that were simply tradeoffs between low BER and 

power efficiency (modeled here as simply the transmitter 
power) at different objective weights. Table 2 shows how 
the weights balance the objectives. By setting a weight to 
zero, the GA ignores this objective, so the first two results 
show how the algorithm behaves in a single objective case. 
This case perfectly attains the desired goals. The multi-
objective cases then show how the objectives are balanced 
based on their respective weights. 
 To add to the algorithm, additional objectives will 
direct the GA to solve problems for different QoS needs like 
data rate as shown in Table 3. The BER in both tables is 
arbitrarily large because of an assumed noise floor that was 
set larger than normal to produce clearer differences in the 
BER performance. 
 The results of these tests show the interdependency of 
the objectives, some of them with highly complex 
relationships, which will only increase as the objective 
functions mature and additional functions are defined. To 
discuss a few aspects of these results, the relationship 
between the spectral efficiency and BER of a waveform is 
interesting. As the spectral efficiency increases, the BER 
increases as well; a result from the GA’s choice of using 
GMSK for higher spectral efficiency, which has a lower 
BER performance than either BPSK or QPSK. At the same 
time, the symbol rate of the resulting waveform is not at its 
maximum because the higher the symbol rate, the larger the 
bandwidth, which results in a decrease in BER. The GA tries 
to establish and maintain a trade-off of all the objectives 
while pushing in a direction set by the weights. 
 Understanding which weights to use for different quality 
of services is important and complicated. This is one more 
area in which the learning machine can operate together with 
the optimization algorithm. As observed QoS does not 
match desired QoS, the learning machine can adjust the 
objectives and weights to correct for flaws. Because of the 
complex interactions among the objectives, the proper 
weighting should be learned from trial and error in the 
cognitive engine. 
 

6. FUTURE COGNITIVE RADIO RESEARCH 
 
6.1. Implementation vs. Theory 
 
When processing the objective functions, the cognitive 
engine works off known communications theory; however, 

Table 1. GNU Radio Knobs and Ranges 
Knob Range Step 

Center Frequency 400 – 500 MHz 
2300 – 2900 MHz 

1 kHz 
1 kHz 

Transmit Power -12 – 5.5 dBm 0.5 dB 
Symbol Rate 125 – 1000 kSps 125 kSps 
Modulation BPSK, QPSK, GMSK  
Pulse shape factor  0.1 – 1.0 0.01 
   

Figure 3. High level flow of genetic algorithm. 
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theory and reality do not necessarily match up for a given 
implementation. An example of this is the difference 
between Gray coded QPSK and BPSK reception with the 
GNU Radio using a coherent receiver. In theory, these two 
have the same performance, yet the actual performance for 
QPSK is worse than BPSK. Unfortunately, actual BER data 
are not available to see the difference in SNR between the 
two, but Figure 4 shows the problems with the constellations 
of BPSK and QPSK under the same symbol rates and 
transmit power. The FFT of QPSK in Figure 5 shows the 
high SNR. 
 To work with differences between theory and practice, 
the cognitive engine must learn from its mistakes, which 
requires a feedback loop from the radio to the engine. When 
the cognitive engine implements a waveform, it does so 
under the assumption that the real performance of the radio 
matches the theoretical performance modeled by the 
objective functions. If the radio reports a higher BER than 
the objective function predicted, this information will be fed 
back through the optimization system to improve the 
modeling in the future. The cognitive engine might not 
understand what the problem was (maybe the gain of the 
Costas loop in the receiver was not set properly), only that 
there was a problem and to attempt to correct for it locally.  
 
6.2. Computational Complexity vs. Performance 
 
Aside from communications-oriented issues with SDR 
waveform developments, like in the previous example, 
computational concerns play a large role in SDR 
implementation. These concerns can translate directly to the 
cognitive engine. Currently, the GNU Radio only works with 
DBPSK and DQPSK, differential modulations, with a 
coherent receiver. For these receivers, the phase and 
frequency synchronization are done using a Costas loop in 
software. A look at the footprint of the receiver using 
OProfile [14] in Table 4 provides insight into the nature of 
the receiver by showing the percent of computational time 
allocated to different symbols (or functions) of the receiver. 
   

 

Table 2. BER (median) and Power (mean) analysis over 1000 runs of the GA 
Weights (1.0, 0) (0, 1.0) (1.0, 0.5) (0.5, 1.0) (1.0, 1.0) 
BER 1.41x10-7 2.94x10-1 2.54x10-3 5.74x10-2 2.25x10-2 
Power (dBm) 2.26 -9.44 -2.70 -5.69 -4.63 
       

Table 3. BER (median), Power, Data Rate, Spectral Efficiency (means) analysis over 1000 runs of the GA 
Weights (1.0, 0.5, 0.5, 0.25) (1.0, 0.5, 0.5, 1.0) (1.0, 0.5, 1.0, 0.25) (1.0, 0.5, 1.0, 1.0) 
BER 1.09x10-2 1.58x10-2 4.87x10-3 1.27x10-2 
Power (dBm) -3.22 -3.67 -2.93 -3.31 
Data Rate (bps) 1.00x106 1.25x106 1.25x106 1.25x106 
Spec. Eff. (bps/Hz) 2.59 3.02 2.42 2.56 
     

(a) 

(b) 
Figure 4. Constellations for a) BPSK and b) QPSK 

with 125 ksps and transmit power of 0 dBm. 
 

Figure 5. Normalized Frequency plot of QPSK 
with 125 ksps at a transmit power of 0 dBm. 
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 This table represents only the top-most computationally 
intensive functions used by the GNU Radio library during 
execution, although there are many more functions involved. 
The most computationally intensive part is the Costas loop. 
Given possible constraints on power consumption of the 
receiver, such as in a handheld unit with a lower battery life, 
it could be better to implement a receiver without a Costas 
loop. If the receiver was changed to using non-coherent 
reception, it would theoretically degrade the performance by 
about 2 dB [15]. However, given the constraints, the 
transmitter could make up for this small performance 
degradation with a slightly higher power output. The 
increased BER might not be a particular problem if the 
application was voice with a higher tolerance for error. 
There is a direct trade-off here between performance and 
power. A suboptimal solution might have other benefits that 
outweigh the few dB of improvements a more complex 
system would provide. 
 System latency is another trade-off that a cognitive 
engine can optimize. Already, mobile phones use 
convolutional codes because of their lower latency over a 
block code with better performance. Perhaps a slight 
increase in performance from a feed-forward automatic gain 
control loop might not outweigh the slight penalty in system 
latency over a feed-back AGC loop. 
 To the cognitive engine, anything that has a trade-off in 
performance is a knob worth turning. As wireless devices 
continue to proliferate, resources will become scarcer that 
will result in greater benefits from an intelligent, 
reconfigurable radio that is capable of understanding the 
performance trade-offs to produce the desired QoS. A 
promising feature of the cognitive engine is that it 
demonstrates improved performance with the increase in the 
configurable radio parameters. As the radio systems become 
more complex, the cognitive engine not only scales but will 
produce more accurate and specific results to the problems. 
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Table 4. Profile of the computational time of the 
blocks in a  GNU Radio QPSK receiver 

symbol name % 
gr_costas_loop_cc 13.11 
gr_constellation_decoder_cb 9.29 
.loop2 5.33 
gr_single_threaded_scheduler 4.74 
gr_clock_recovery_mm_cc 4.25 
gr_fft_filter_ccc 4.09 
gr_costas_loop_cc::phase_detector_4 3.31 
gr_fir_ccf_simd::filter 3.02 
.loop1 2.97 
gr_multiply_const_cc 2.12 
gr_correlate_access_code_bb 1.37 
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