
IEEE 802.15.4 transceiver for the 868/915 MHz

band using Software Defined Radio

Rafik Zitouni‡ †, Stefan Ataman‡, Marie Mathian‡ and Laurent George‡ †

‡ ECE Paris-LACSC Laboratory

37 Quai de Grenelle, 75015, Paris, France
† LISSI / UPEC

120, rue Paul Armangot

94400 Vitry S/Seine, France

Email: {zitouni, ataman, mathian, lgeorge}@ece.fr

Abstract—This paper reports an implementation of the PHY
specifications of the IEEE 802.15.4 standard for the frequency
band 868/915 MHz on a Software Defined Radio (SDR) platform.
This standard is defined for low power, low data rate and
low cost wireless networks. These specifications are used by
the Zigbee technology for various applications such as home
automation, industry monitoring or medical surveillance. Several
hardware PHY 868/915 MHz band IEEE 802.15.4 transceiver
implementations have been already reported on ASIC and FPGA
[1] [2]. SDR offers one possibility to realize a transceiver with
high flexibility and reconfigurability [3]. The whole –transmitter
and receiver– chain has been defined in software using the GNU
Radio software project [4] and the USRP (Universal Software
Radio Peripheral) platform from Ettus Research [5]. Two new
blocks have been added to the GNU Radio project, one for
the Direct Sequence Spread Spectrum and the second for the
reconstruction of the packets. The experimentations have been
performed in a noisy environment and the PER, BER and SNR
have been computed. The obtained results are coherent with what
can be expected from the theory.

Index Terms—Wireless communications, Software Defined Ra-
dio, IEEE 802.15.4, GNU Radio.

I. INTRODUCTION

Most of the standards and protocols of lower layers of wire-

less transmissions (AM, FM, IEEE 802.11, IEEE 802.15.1,

IEEE 802.15.4. etc.) are mainly implemented in hardware

(HW). This lack of reconfigurability makes the adaptation

to varying radio resources difficult, especially when multiple

standards need to be often switched in order to take advan-

tage of the scarce radio resources available. The purpose of

Software Defined Radio (SDR) is to avoid these drawbacks of

traditional wireless communications and replace the hardware

equipment by software. The huge advantage of SDR platform

lies in its flexibility, its multi-functionality and its low devel-

opment cost. The reconfigurability of the platform ensures the

reusability of the hardware [3], thus minimizing the design

complexity of new RF terminals.

The ideal SDR allows the analog-to-digital (ADC) and

digital-to-analog (DAC) conversion to be as close as possible

to the antenna [6], eliminating the need of high-frequency

radio subsystems. Subsequently, the CPU executes the soft-

ware (SW) subsystem of the SDR, all signal processing

operations are accomplished by SW. Unfortunately, today’s

technology is neither cost-effective for direct ADC conversion

from the antenna nor enough power full to compute GSPS

(Giga Samples-per-Second) in real-time. Therefore, the typical

SDR platform available today uses HW high-frequency radio

front-end, the SDR part being implemented in the baseband

only. The HW supporting the SDR platform is typically based

on FPGAs or DSPs (Digital Signal Processors) [7].

GNU Radio [8] and OSSIE [9] (Open-Source Software

Communication Architecture Implementation Embedded) are

the two open source software subsystems for the USRP (Uni-

versal Software Radio Peripheral) SDR from Ettus Research

[5]. The USRP HW is available in different versions. In our

implementation we used the USRP1 HW, featuring a sampling

rate of 128 MSPS (Mega Samples-per-Second) for the trans-

mitter and 64 MSPS for the receiver. By addition of different

daughter-boards, the baseband signal can be transposed in

frequency bands up to 6000 MHz. The USRP1 HW platform

proves to be also cost-effective, compared to its competitors

(Microsoft’s SORA and Datasoft’s Typhoon).

The IEEE 802.15.4 [10] standard defines the physical and

link layers for low-rate Wireless Personnel Area Networks

(LR-WPAN), used in wireless sensor networks applications

with strong energy consumption constraints. The physical

layer comprises three principal frequency bands allowing 49

channels: 16 channels in the 2450 MHz for the ISM (Industrial

Scientific Medical) band, 30 for North America and 3 channels

in the 868 MHz band for Europe [10]. The band of 2450 MHz

operates at law data rates of 250 kb/s while the bands of 915

MHz and 868 MHz operate at 40 kb/s and 20 kb/s respectively.

A number of hardware implementations of the IEEE

802.15.4 have been reported on ASICs or FPGAs [1], [2], but

they do not allow us to control the flexibility and the ability

of all software stack layers. The first software implementation

of the IEEE 802.15.4 using the GNURadio environment for

the 2450 MHz band was reported in [11]. In wireless sensor

networks, the transceiver in the 868/915 MHz band is more

suitable when low data rate transmission are used between

sensor nodes. Furthermore it presents a longer range than that

of the 2450 MHz band for a given link budget. The objective

of our work is to implement the specifications of the IEEE

802.15.4 standard for the 868/915 MHz band, which is not

Proceedings of SDR'12-WInnComm-Europe, 27-29 June 2012

©2012 The Software Defined Radio Forum, Inc.-All Rights Reserved 44



yet reported in the literature.

Our software transceiver was developed by closely follow-

ing the IEEE 802.15.4 specifications for the 868/915 MHz

bands. The implementation is similar to the one of 2450

MHz band presented in [12], [11]. To evaluate the transmit-

ter/receiver performances, the BER (Bit Error Rate) and SNR

(Signal-to-Noise Ratio) have been computed by changing the

input power signal at the transmitter.

The rest of the paper is organized as follows. Section II

presents a description of the SDR platform used. In Section

III, we present the description of the developed transmit-

ter/receiver chain. Section IV discusses the experimentations

and the obtained results. Finally, in Section V we formulate

some concluding remarks.

II. USRP AND GNU RADIO

In the following two subsections we describe briefly the

USRP1 HW [5], used in our implementation as well as the

GNU Radio [4] toolkit.

A. Universal Software Radio Peripheral

The USRP1 HW consists of a motherboard and optional

add-on RF daughterboards. It is connected to a host com-

puter via USB 2.0. The USRP’s motherboard supports up

to four daughterboards: two for transmission (TX) and two

for reception (RX). The motherboard has four 12-bits ADCs

(with a maximum sampling rate of 64 MSPS), four 14-bit

DACs (with a maximum conversion rate of 128 MSPS),

and an Altera FPGA for simple but high-speed operations

such as up-conversion, down-conversion, interpolation, and

decimation [5]. The ADCs and DACs allow us to receive

baseband signals up to 32 MHz and are able to generate

baseband signals up to 50 MHz. Unfortunately, the USB tunnel

limits these performances to 8 MHz. The USRP1 provides

buffer in both the USB controller and the FPGA at 2 KB and

4 KB respectively. Fig. 1 depicts the USRP1 blocks from the

motherboard.

Fig. 1. USRP1 block diagram [5]

B. GNU Radio

GNU Radio is an open source project toolkit for building

software radios that run on host computers [4]. It provides sig-

nal processing blocks for modulation, demodulation, filtering

and various Input/Output operations. New blocks can be easily

added to the toolkit. The software radio platform is created by

connecting these blocks to form a flowgraph. The blocks are

written in C++ and they are connected through a Python script.

The Verilog HDL layer is dedicated to configure the FPGA.

The advantage of Python in connecting these processing

blocks is that it allows the data flow to be at maximum

rate, without being interpreted. The integration of the C++

blocks into the scripting language is provided by the SWIG

(Simplified Wrapper and Interface Generator), which is an in-

terface compiler. Many signal processing blocks are available

to the GNU Radio community to facilitate the development.

To create a flow graph we can proceed by the graphical

interface called gnuradio-companion or directly through the

python code. The C++ blocks are described by the XML code

to facilitate the use and the visibility of the block chains, the

XML is interpreted to the python code by the cheetah tools1

. In Fig. 2 we depict the programming language layers of the

GNU Radio.

Fig. 2. Software layers of the GNU Radio

III. TRANSCEIVER DESCRIPTION

The IEEE 802.15.4 [10] standard is the definition of wireless

physical (PHY) and medium access control (MAC) protocols

for low-data rate and low power applications. It specifies two

families of bands: the first one is centered at 868 and 915

MHz with 20 and 40 kbps, the second one at 2450 MHz with

250 kbps.

The specifications from [10] define the use of different mod-

ulation techniques and data rate for the specified channels. The

D-BPSK (Differential Binary Phase Shift Keying) is one of the

modulation techniques used in the 915/868 MHz. The symbol

spreading is the Direct Sequence Spread Spectrum (DSSS), in

which each symbol is represented by a Pseudo Noise sequence

of 15 chips. The chips are modulated/demodulated by the D-

BPSK encoding/decoding at rates of 300 kchips/s and 600

kchips/s for the 868 MHz and 915 MHz bands respectively.

1http://www.cheetahtemplate.org/

45



Fig. 3. Transmitter flow graph

A. Transmitter

Our transmitter comprises eight processing blocks, as de-

picted in Fig. 3. The definition of the packet messages is based

on that of the IEEE 802.15.4 standard. The packet format

is detailed in Fig. 4. At the output of the transmitter, the

maximum packet size is 133 bytes. Due to the USB 2 tunnel,

the packet size should be a multiple of 128 samples, therefore,

zero padding with the x/00 (representing the “NUL” character)

is performed. The number of padded bytes is conditioned by

the parameter called Byte Modulus which depends on the

sampling rate and on the number of bits per symbol. The

Byte Modulus is given by:

Byte Modulus = LCM

(

128 MSPS

8 MSPS
, sps

)

·

(

bps

sps

)

(1)

where

• 128 MSPS – DAC sampling rate of the USRP1

• 8 MSPS – Sampling rate of the USB tunnel

• sps – Number of samples per symbol

• bps – Number of bits per symbol

• LCM – Lowest Common Multiple of 16 MSPS and sps

To avoid padding and to get the same fields as in the IEEE

802.15.4 specifications, the packet size is set equal to 130

bytes. This size is obtained by reducing the address informa-

tion field AddressInf . Moreover, a 16-bit CRC (Cyclic Re-

dundancy Check) is attached to the packet payload, allowing

the receiver to calculate the PER (Packet Error Rate).

Input bits Chip values (c0 c1 . . . c14)

0 1 1 1 1 0 1 0 1 1 0 0 1 0 0 0

1 0 0 0 0 1 0 1 0 0 1 1 0 1 1 1

TABLE I
SYMBOL TO CHIP MAPPING

The packets are divided into chunks of symbols by the

gr.packed_to_unpacked block, each symbol represent-

ing 1 bit. Since the C++ programming language does not

allow us to have a data type of 1 bit, the bits in the bytes

of an input stream are grouped into chunks of 1 byte. The

MSB (Most Significant Bit) of 8 output bits represents the

one bit at the input of gr.map_bb. After that, the differ-

ential encoder gr.diff_encoder_bb encodes a current

symbol modulo-2 of the previous one. Then, the symbols

are mapped by gr.symbols_to_chips into 15 Pseudo

Number Sequence chip as specified in Table I. The output of

mapping is short-type (16 bits carrying the 15 chips). With

the same technique the stream is unpacked to a chunks of

16 bits representing the chips stream. Each chip is repre-

sented by a complex constellation point in 1 dimension for

the BPSK modulator by gr.chunks_to_symbols_sc.

The stream is then fed through a Root Raised Cosine

gr.interp_fir_filter_ccf filter which up-samples

the signal, after which it is sent from the host computer via

USB to the transmitting USRP.

B. Receiver

The receiver begins with an USRP source connected to a

squelch filter gr.pwd_squelch which admits only signals

with a certain dB strength. The squelch filter in GNU Radio

outputs 0 when the incoming signal is too weak. The stream

result of the squelch is passed to the Automatic Gain Control

gr.agc_cc (AGC) of a D-BPSK demodulator, it regulates

the gain in a way that does not have a large or small ampli-

tude and to avoid distortions. After that, the result enters to

two filters in gr.interp_fir_filter_ccf, FIR (Finite

Impulse Response) and RRC (Root Raised Cosine) allowing

the receiver to process the change of the transmitted pulse

and minimize symbol interference. The RRC filter makes

the correlation between the received signal and the expected

one. It calculates a FIR filter coefficient or a tap weight.

The demodulator synchronizer is composed by two blocks, a

Costas Loop gr.costas_loop_cc (Phase Locked Loop)

and the Mueller and Müller gr.clock_recovery_mm_cc

[13]. The Costas Loop recovers the carrier and improves the

Bit Error Rate of BPSK demodulator. The Mueller-Müller

Timing recovery block recovers the symbol timing phase of

the input signal. After the demodulator, the stream is converted

from complex to real in order to send it to our developed block

ieee.ieee802_15_4_packet_sink which slices real

stream from chips to bits. With the knowledge of the packet

length field, the packets are decoded. The first information

decoded is the preamble with four 0x00 bytes, it is followed

by the rest of the fields. If the preamble is not detected, the

preamble search is re-launched. The receiver performs the er-

ror detection without correction. After the packet construction,

46



Fig. 4. IEEE 802.15.4 packet format for the USRP

a CRC-16 value is processed and compared to that carried by

the CRC field of the received frame. If they are not equal, the

received packet is incorrect.

The packet queue is observed by an external python thread.

When a message arrives to the queue, a thread starts to call a

function that process the packet, e.g: like printing the packet

content.

IV. EXPERIMENTAL CONDITIONS AND RESULTS

The experimentations are performed in an indoor environ-

ment. We use two USRP1 platforms coupled with RFX 900

daughterboards covering a frequency range from 750 MHz to

1050 MHz. The GNU Radio software stack is executed on

a host computer having one Core 2 Duo CPU running at 2.4

GHz and 2 GB of RAM. The distance between the two USRP1

boxes was greater than 2 meters.

The principal USRP1 parameters are the transmitter Inter-

polation I and receiver Decimation D, they are calculated

according to a symbol rate r, DAC s and ADC s sampling,

and a number of samples per symbol sps, such as:

I =
DAC s

r · sps
, D =

ADC s

r · sps
(2)

where :

• DAC s = 128 MSPS

• I ∈ [16, 20, 24, ... 508, 512]
• ADC s = 64 MSPS

• D ∈ [8, 10, 12, ... 254, 256]

For 20 kbps, the transmitter and receiver parameters are

respectively I = 400 and D = 200 with a sps = 16.
Otherwise, when the data bit rate is equal to 40 kbps, the

I and D take the same values but with sps = 8. The amplifier
amplitude is defined by a dimensionless scalar with values

ranging from 0 to 32767.
The results shown in Fig. 6 depict the power spectrum

of the transmitted signal from the GNURadio transmitter.

They correspond to the output of the FFT spectrum-analyser

tool that is included in the GNURadio framework. A peak

is visible with our software transceiver when we choosing

the channel at 916 MHz, with a number of 35 samples per

symbol which allow us to have an intermediate frequency

of 1.5 MHz. This value is in concordance with the values

taken by the transmitted power spectral density of the IEEE

802.15.4 standard (see Fig. 6). Furthermore, frequencies at

the edge of the main band are visible but strongly attenuated.

These imperfections may be due to the roll-off characteristics

of the interpolation filter in the up-conversion processing of

the FPGA.

We use a D-BPSK modulation and the receiver constellation

is depicted in Fig. 7.

Fig. 6. Power spectrum of our software transceiver recorded with the USRP
and drawn by FFT gnuradio plot

Fig. 7. Receiver symbol constellation

The performance of D-BPSK modulation is evaluated with-

out packet generation. The flexibility of the GNU radio per-

mits the reconfigurability of the transmitter/receiver chain by

adding or replacing blocks. In a first experiment, we use the

modulator and demodulator chains to measure the BER and

SNR parameters. Fig. 8 illustrates the average BER versus the

input SNR (dB) for the frequency 868.3MHz and for the MFB

Matched Filter Bound of D-BPSK modulation. The results

have been computed by changing the amplifier amplitude

values from 1000 to 12000 with the step of 100 for a time

period of 400 seconds. Although noisy, the results are in

concordance to the theory, proving that the implementation

is working.

47



Fig. 5. Receiver flow graph

2 4 6 8 10 12 14

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

SNR (db)

B
E

R

868.3 MHz

MFB

Fig. 8. The BER versus received SNR for central frequency 868.3 MHz and
for the MFB

In the second experiment, the packet generator and packet

sink are connected to the transmission chain and we measure

a PER parameter as a function of SNR (dB). The measures are

obtained by sending for each amplifier amplitude 100 packets

apart from 0.2 s between two successive packets. The PER

decreases when the amplifier amplitude increases. The shape

of the curve is compliant to that of the BER (show Fig.9). The

PER depends on the synchronization between the transmitter

and the receiver. We noticed that the synchronization does not

occur at every execution. This issue may arise when the USRP

does not clear its buffer memory.

V. CONCLUSION

In this paper, we report the implementation of the IEEE

802.15.4 standard on a SDR transceiver for the 915/868 MHz

band. The SW stack is based on the GNURadio open-source

project and the HW is based on an USRP1 platform from Ettus

Research. The BER and PER of the 802.15.4 have been cal-

culated independently in an indoor environment by changing

the signal amplitude. The results are coherent with the lower

theoretical bound that is expected. The obtained performances

of the PER are degraded compared to the BER because the

successful receiving packets depend on the synchronization

and the BER.

5 10 15
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SNR (db)

P
E

R

916 MHz

868.3 MHz

Fig. 9. The PER over received SNR using two central frequencies 916 MHz
and 868 MHz

REFERENCES

[1] J. Sabater, J. Gomez, and M. Lopez, “Towards an ieee 802.15.4 sdr
transceiver,” in Icecs. Ieee, 2010, pp. 323–326.

[2] N.-J. Oh, S.-G. Lee, and J. Ko, “A cmos 868/915 mhz direct conversion.
zigbee single-chip radio,” IEEE Communications Magazine, vol. 43,
no. 12, pp. 100–109, 2006.

[3] T. Ulversoy, “Software defined radio: Challenges and opportunities,”
IEEE Communications Surveys and Tutorials, vol. 12, no. 4, pp. 531–
550, 2010.

[4] E. Blossom, “Gnu radio: tools for exploring the radio frequency spec-
trum,” Linux J., vol. 2004, pp. 4–, Jun. 2004.

[5] Ettus, “About ettus research,” Feb. 2011. [Online]. Available:
https://www.ettus.com/product

[6] J. Mitola, “Software radios: Survey, critical evaluation and future direc-
tions,” IEEE Aerospace and Electronic Systems Magazine, vol. 8, no. 4,
pp. 25–36, Apr. 1993.

[7] M. N. O. Sadiku and C. M. Akujuobi, “Software-defined radio: a brief
overview,” Ieee Potentials, vol. 23, no. 4, pp. 14–15, 2004.

[8] gnuradio.org, “Gnu radio,” Feb. 2011. [Online]. Available: http:
//gnuradio.org/redmine/projects/gnuradio/wiki

[9] ossie.wireless.vt.edu, “Sca-based open soruce software defined radio,”
Feb. 2011. [Online]. Available: http://ossie.wireless.vt.edu/

[10] “Ieee standard for local and metropolitan area networks–part 15.4: Low-
rate wireless personal area networks (lr-wpans),” pp. 1–314, 2011, iEEE
Std 802.15.4-2011 (Revision of IEEE Std 802.15.4-2006).

[11] T. Schmid, “Gnu radio 802.15.4 en- and decoding,” Tech. Rep., 2006.
[12] T. Schmid, T. Dreier, and M. B. Srivastava, “Software radio implementa-

tion of short-range wireless standards for sensor networking,” in SenSys,
2006, pp. 381–382.

[13] G. R. Danesfahani and T. G. Jeans, “Optimisation of modified Mueller
and Muller algorithm,” Electronics Letters, vol. 31, no. 13, pp. 1032–
1033, Jun. 1995.

48


